Equivariant–Bivariant Chern Character for Profinite Groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chern Character for Totally Disconnected Groups

In this paper we construct a bivariant Chern character for the equivariant KK-theory of a totally disconnected group with values in bivariant equivariant cohomology in the sense of Baum and Schneider. We prove in particular that the complexified left hand side of the Baum-Connes conjecture for a totally disconnected group is isomorphic to cosheaf homology. Moreover, it is shown that our transfo...

متن کامل

Profinite Groups

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...

متن کامل

Fusion systems for profinite groups

We introduce the notion of a pro-fusion system on a pro-p group, which generalizes the notion of a fusion system on a finite p-group. We also prove a version of Alperin’s Fusion Theorem for pro-fusion systems.

متن کامل

Cohomology of Profinite Groups

A directed set I is a partially ordered set such that for all i, j ∈ I there exists a k ∈ I such that k ≥ i and k ≥ j. An inverse system of groups is a collection of groups {Gi} indexed by a directed set I together with group homomorphisms πij : Gi −→ Gj whenever i ≥ j such that πii = idGi and πjk ◦ πij = πik. Let H be a group. We call a family of homomorphisms {ψi : H −→ Gi : i ∈ I} compatible...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: K-Theory

سال: 2002

ISSN: 1573-0514,0920-3036

DOI: 10.1023/a:1016036724442